The European Educational Researcher

Modelling Digital Competence by Combining Computational Thinking with General Learning Taxonomies

The European Educational Researcher, Volume 6, Issue 1, February 2023, pp. 21-42
OPEN ACCESS VIEWS: 1355 DOWNLOADS: 982 Publication date: 15 Feb 2023
ABSTRACT
In the context of a rapid digital transformation, digital competence is now to be regarded as a fourth cultural skill complementing reading, writing, and arithmetic. In this paper, we argue that a well-structured and sound competence model is needed as a shared foundation for learning, teaching, pedagogical diagnostics and evaluative schemes in the school system. Every competence model should build upon a consistent, theoretically sound framework for teaching and learning. We consequently develop a competence model for digital competence by drawing on the concept of computational thinking as well as on general learning taxonomies. By combining different knowledge and process dimensions with essential facets of computational thinking a cube model of digital competence can be constructed. Hence, we develop and substantiate a structure model for digital competence building upon the concept of computational thinking that goes beyond the existing frameworks only focusing on the subject-related context and put this up for discussion. The next step would then be to supplement the structure model by specific learning objectives, so that developing approaches to teaching and learning digital competence will have a sound basis.
KEYWORDS
Computational Thinking, Digital Competence, Competence Models, Learning Taxonomies
CITATION (APA)
Schreiner, C., & Wiesner, C. (2023). Modelling Digital Competence by Combining Computational Thinking with General Learning Taxonomies. The European Educational Researcher, 6(1), 21-42. https://doi.org/10.31757/euer.612
REFERENCES
  1. Adler, A. (1930). Dostojewski (1918). In A. Adler (Ed.), Praxis und Theorie der Individual-Psychologie [The practice and theory of individual psychology] (pp. 199–206). Springer. https://doi.org/10.1007/978-3-642-99710-5
  2. Ainley, J., Schulz, W., & Fraillon, J. (2016). A global measure of digital and ICT literacy skills. Background paper prepared for the 2016 Global Education Monitoring Report. Education for people and planet: Creating sustainable futures for all (Paris, France). United Nations. Educational, Scientific and Cultural Organization. https://unesdoc.unesco.org/ark:/48223/pf0000245577
  3. Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (Eds.). (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives (Complete ed). Longman.
  4. Anderson, N. D. (2016). A Call for Computational Thinking in Undergraduate Psychology. Psychology Learning & Teaching, 15(3), 226–234. https://doi.org/10.1177/1475725716659252
  5. Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., & Zagami, J. (2016). A K-6 Computational Thinking Curriculum Framework: Implications for Teacher Knowledge. Journal of Educational Technology & Society, 19(3), 47–57.
  6. Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661–670.
  7. Bachmair, B., Risch, M., Friedrich, K., & Mayer, K. (2011). Eckpunkte einer Didaktik des mobilen Lernens. Operationalisierung im Rahmen eines Schulversuchs. MedienPädagogik: Zeitschrift für Theorie und Praxis der Medienbildung, 19, 1–38. https://doi.org/10.21240/mpaed/19/2011.03.11.X
  8. Balzer, W. (1982). Empirische Theorien: Modelle - Strukturen – Beispiele. Vieweg+Teubner. https://doi.org/10.1007/978-3-663-00169-0
  9. Baumgartner, P., & Payr, S. (1999). Lernen mit Software. Lernen mit interaktiven Medien. Studienverlag.
  10. BBC - Bitesize (2020). Introduction to computational thinking. BBC. https://www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1
  11. Biggs, J. B., & Tang, C. S. (2007). Teaching for quality learning at university what the student does. McGraw-Hill/Society for Research into Higher Education & Open University Press.
  12. Black, P., & Wiliam, D. (2009). Developing the theory of formative assessment. Educational Assessment, Evaluation and Accountability, 21(1), 5–31. https://doi.org/10.1007/s11092-008-9068-5
  13. Bloom, B. S., Engelhart, M. D., Furst, E., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of educational objectives. The classification of educational goals: Handbook 1. Cognitive domain. Longman.
  14. Bonfadelli, H., & Jarren, O. (Eds.). (2001). Einführung in die Publizistikwissenschaft. Haupt.
  15. Bower, M., Wood, L. N., Lai, J. W. M., Howe, C., Lister, R., Mason, R., Highfield, K., & Veal, J. (2017). Improving the Computational Thinking Pedagogical Capabilities of School Teachers. Australian Journal of Teacher Education, 42(3).
  16. Brandhofer, G., Baumgartner, P., Ebner, M., Köberer, N., Trueltzsch-Wijnen, C., & Wiesner, C. (2019). Bildung im Zeitalter der Digitalisierung. In S. Breit, F. Eder, K. Krainer, C. Schreiner, A. Seel, & C. Spiel (Eds.), Nationaler Bildungsbericht Österreich 2018. Fokussierte Analysen bildungspolitischer Schwerpunktthemen (Vol. 2). Leykam.
  17. Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Paper presented at annual American Educational Research Association meeting, Vancouver, BC, Canada.
  18. Bucik, V., & Neubauer, A. C. (1996). Bimodality in the Berlin model of intelligence structure (BIS): A replication study. Personality and Individual Differences, 21(6), 987–1005. https://doi.org/10.1016/S0191-8869(96)00129-8
  19. Burkart, R. (1998). Kommunikationswissenschaft: Grundlagen und Problemfelder; Umrisse einer interdisziplinären Sozialwissenschaft. Böhlau.
  20. Ch’ng, S. I., Low, Y. C., Lee, Y. L., Chia, W. C., & Yeong, L. S. (2019). Video Games: A Potential Vehicle for Teaching Computational Thinking. In S.-C. Kong & H. Abelson (Eds.), Computational Thinking Education (pp. 247–260). Springer. https://doi.org/10.1007/978-981-13-6528-7
  21. Csapó, B. (2010). Goals of Learning and the Organization of Knowledge. In E. Klieme, D. Leutner, & M. Kenk (Eds.), Kompetenzmodellierung. Zwischenbilanz des DFG-Schwerpunktprogramms und Perspektiven des Forschungsansatzes. 65. Beiheft zur Zeitschrift für Pädagogik (pp. 12–27). Beltz.
  22. Digital Technologies Hub (2020). Education Services Australia. Computational thinking. https://www.digitaltechnologieshub.edu.au/teachers/topics/computational-thinking
  23. Eder, F., & Hofmann, F. (2012). Überfachliche Kompetenzen in der österreichischen Schule: Bestandsaufnahme, Implikationen, Entwicklungsperspektiven. In B. Herzog-Punzenberger (Ed.), Nationaler Bildungsbericht Österreich 2012. Fokussierte Analysen bildungspolitischer Schwerpunktthemen (Vol. 2, pp. 71–109). Leykam.
  24. Eickelmann, B. (2019). Measuring Secondary Schools Students’ Competence in Computational Thinking in ICILS 2018—Challenges, Concepts, and Potential Implications for School Systems around the World. In S.-C. Kong & H. Abelson (Eds.), Computational Thinking Education (pp. 53–64). Springer. https://doi.org/10.1007/978-981-13-6528-7
  25. Eickelmann, B., Labusch, A., & Vennemann, M. (2019). Computational Thinking and Problem-Solving in the Context of IEA-ICILS 2018. In D. Passey, R. Bottino, C. Lewin, & E. Sanchez (Eds.), Empowering Learners for Life in the Digital Age (Vol. 524, pp. 14–23). Springer International. https://doi.org/10.1007/978-3-030-23513-0_2
  26. Ferrari, A. (2013). DIGCOMP a framework for developing and understanding digital competence in Europe. Publications Office of the European Union.
  27. Fleischer, J., Koeppen, K., Kenk, M., Klieme, E., & Leutner, D. (2013). Kompetenzmodellierung: Struktur, Konzepte und Forschungszugänge des DFG-Schwerpunktprogramms. Zeitschrift für Erziehungswissenschaft, 16(S1), 5–22. https://doi.org/10.1007/s11618-013-0379-z
  28. Fraillon, J., Ainley, J., Schulz, W., Duckworth, D., & Friedman, T. (2019). IEA International Computer and Information Literacy Study 2018 Assessment Framework. Springer International. https://doi.org/10.1007/978-3-030-19389-8
  29. Fraillon, J., Ainley, J., Schulz, W., Friedman, T., & Duckworth, D. (2020). Preparing for Life in a Digital World: IEA International Computer and Information Literacy Study 2018 International Report. Springer International. https://doi.org/10.1007/978-3-030-38781-5
  30. Google for Education (2020). Exploring computational thinking. Google for Education. https://edu.google.com/resources/programs/exploring-computational-thinking/#!ct-overview
  31. Greshoff, R. (1994). Methodische Überlegungen zum Theorienvergleich in den Sozialwissenschaften. In F. Benseler, B. Blanck, R. Greshoff, & W. Loh, Alternativer Umgang mit Alternativen (pp. 125–140). VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-322-91654-9_8
  32. Grover, S., & Pea, R. (2013). Computational Thinking in K–12. Educational Researcher, 42(1), 38–43. https://doi.org/DOI: 10.3102/0013189X12463051
  33. Guilford, J. P. (1956). The Structure of Intellect. Psychological Bulletin, 4(53), 267–292.
  34. Guilford, J. P. (1959). Three Faces of Intellect. American Psychologist, 8(14), 469–479.
  35. Guilford, J. P. (1967). The nature of human intelligence. McGraw-Hill.
  36. Hartig, J., & Klieme, E. (2006). Kompetenz und Kompetenzdiagnostik. In K. Schweizer (Ed.), Leistung und Leistungsdiagnostik (pp. 127–143). Springer. https://doi.org/10.1007/3-540-33020-8_9
  37. Hoppe, H. U., & Werneburg, S. (2019). Computational Thinking—More than a Variant of Scientific Inquiry! In S.-C. Kong & H. Abelson (Eds.), Computational Thinking Education (pp. 13–30). Springer. https://doi.org/10.1007/978-981-13-6528-7
  38. IDM (Institut für Didaktik der Mathematik). (2007). Standards für die mathematischen Fähigkeiten österreichischer Schülerinnen und Schüler am Ende der 8. Schulstufe. Universität Klagenfurt.
  39. IOWA State University. (2012). Revised Bloom’s handout. https://www.celt.iastate.edu/wp-content/uploads/2015/09/RevisedBloomsHandout-1.pdf
  40. ISTE & CSTA. (2011). Operational Definition of Computational Thinking for K–12 Education. https://cdn.iste.org/www-root/Computational_Thinking_Operational_Definition_ISTE.pdf
  41. Jäger, A. O. (1973). Dimensionen der Intelligenz. Hogrefe.
  42. Kail, R., & Pellegrino, J. W. (1988). Menschliche Intelligenz. Spektrum.
  43. Kerres, M. (2017). Digitalisierung als Herausforderung für die Medienpädagogik: „Bildung in einer digital geprägten Welt“. In C. Fischer (Ed.), Pädagogischer Mehrwert. Digitale Medien in Schule und Unterricht (pp. 85–104). Waxmann.
  44. Klieme, E., Hartig, J., & Rauch, D. (2008). The concept of Competence in Educational Contexts. In J. Hartig, E. Klieme, & D. Leutner (Eds.), Assessment of competencies in educational contexts (pp. 3–22). Hogrefe.
  45. Klieme, E., Leutner, D., & Kenk, M. (Eds.). (2010). Kompetenzmodellierung. Zwischenbilanz des DFG-Schwerpunktprogramms und Perspektiven des Forschungsansatzes. Zeitschrift für Pädagogik, 65. Beiheft, 9–11.
  46. Klotz, V. K. (2015). Diagnostik beruflicher Kompetenzentwicklung. Springer. https://doi.org/10.1007/978-3-658-10681-2
  47. Kong, S.-C., & Abelson, H. (Eds.). (2019). Introduction to Computational Thinking Education. In Computational Thinking Education (pp. 1–12). Springer. https://doi.org/10.1007/978-981-13-6528-7
  48. Kreitzer, A. E., & Madaus, G. F. (1994). Empirical investigations of the hierarchical structure of the Taxonomy. In L. W. Anderson & L. A. Sosniak (Eds.), Bloom’s taxonomy: A forty-year retrospective: Ninety-third yearbook of the National Society for the Study of Education (pp. 64–81). University of Chicago Press.
  49. Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: Computational thinking with games in school age children. International Journal of Child-Computer Interaction, 2(1), 26–33. https://doi.org/10.1016/j.ijcci.2014.06.003
  50. Locke, J. (1689). The Works: An Essay concerning Human Understanding. Online Library of Liberty. https://oll.libertyfund.org/
  51. Maletzke, G. (1998). Kommunikationswissenschaft im Überblick. VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-322-80363-4
  52. McClelland, D. C. (1973). Testing for competence rather than for ‘intelligence.’ American Psychologist, 28(1), 1–14. https://doi.org/10.1037/h0034092
  53. Metzger, C., & Nüesch, C. (2004). Fair prüfen: Ein Qualitätsfaden für Prüfende an Hochschulen. Institut für Wirtschaftspädagogik.
  54. National Research Council (U.S.). (2010). Report of a Workshop on The Scope and Nature of Computational Thinking. National Academies Press.
  55. Palts, T., & Pedaste, M. (2020). A Model for Developing Computational Thinking Skills. Informatics in Education, 19(1), 113–128. https://doi.org/10.15388/infedu.2020.06
  56. Pant, H. A. (2013). Wer hat einen Nutzen von Kompetenzmodellen? Zeitschrift für Erziehungswissenschaft, 16(S1), 71–79. https://doi.org/10.1007/s11618-013-0388-y
  57. Papert, S. (1972). Teaching Children Thinking. Programmed Learning and Educational Technology, 9(5), 245–255. https://doi.org/10.1080/1355800720090503
  58. Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.
  59. Parr, J. (1984). Guilford’s Structure of Intellect Theory: An Evaluation of the Three Dimensional Model and the Implications for Its Use in the Education of the Gifted Child. Masters Theses & Specialist Projects, Paper 1807, 63. http://digitalcommons.wku.edu/theses/1807
  60. Pellegrino, J. W., Chudowsky, N., & Glaser, R. (2001). Knowing What Students Know: The Science and Design of Educational Assessment. Committee on the Foundations of Assessment. National Academy Press.
  61. Renger, R., & Wiesner, C. (2006). Journalistik lehren. Ein integratives Konzept für die hochschulgebundene Journalistikausbildung. In R. Renger, H. H. Fabris, & E. Rauchenzauner (Eds.), Generalisten oder Spezialisten (pp. 101–118). kfj.
  62. Renkl, A. (2015). Wissenserwerb. In E. Wild & J. Möller (Eds.), Pädagogische Psychologie (pp. 3–24). Springer.
  63. Rich, P. J., Browning, S. F., Perkins, M., Shoop, T., Yoshikawa, E., & Belikov, O. M. (2019). Coding in K-8: International Trends in Teaching Elementary/Primary Computing. TechTrends, 63(3), 311–329. https://doi.org/10.1007/s11528-018-0295-4
  64. Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
  65. Saam, N. J. (2009). Modellbildung. In S. Kühl, P. Strodtholz, & A. Taffertshofer (Eds.), Handbuch Methoden der Organisationsforschung (pp. 517–532). VS Verlag für Sozialwissenschaften. https://doi.org/10.1007/978-3-531-91570-8_25
  66. Sadler, D. R. (2013). Making Competent Judgments of Competence. In S. Blömeke, O. Zlatkin-Troitschanskaia, C. Kuhn, & J. Fege (Eds.), Modeling and measuring competencies in higher education: Tasks and challenges (pp. 13–27). Sense.
  67. Schaefer, H. (1992). Modelle in der Medizin. Springer.
  68. Schreiner, C., & Wiesner, C. (2019). Die Überprüfung der Bildungsstandards in Österreich: Der erste Zyklus als Meilenstein für die Schul- und Unterrichtsentwicklung – eine gelungene Innovation im österreichischen Schulsystem. In A. C. George, C. Schreiner, C. Wiesner, M. Pointinger, & K. Pacher (Eds.), Fünf Jahre flächendeckende Bildungsstandardüberprüfungen in Österreich. Vertiefende Analysen zum Zyklus 2012 bis 2016 (pp. 13–54). Waxmann.
  69. Schreiner, C., Wiesner, C., & Harych, P. (2020). Kompetenzstufen in Studien zur Kompetenzmessung im Vergleich: Konzepte, Entwicklung und Interpretation. In U. Greiner, F. Hofmann, C. Schreiner, & C. Wiesner (Eds.), Bildungsstandards. Kompetenzorientierung, Aufgabenkultur und Qualitätsentwicklung im Schulsystem (pp. 388–409). Waxmann.
  70. Selby, C. C., & Selby, C. (2013). Computational Thinking: The Developing Definition. Paper presentet at the 18th annual conference on innovation and technology in computer science education in Canterbury.
  71. Senkbeil, M., Eickelmann, B., Vahrenhold, J., Goldhammer, F., Gerick, J., & Labusch, A. (2019). Das Konstrukt der computer- und informationsbezogenen Kompetenzen und das Konstrukt der Kompetenzen im Bereich ‘Computional Thinking’ in ICILS 2018. In B. Eickelmann, W. Bos, J. Gerick, F. Goldhammer, H. Schaumburg, K. Schwippert, M. Senkbeil, & J. Vahrenhold (Eds.), ICILS 2018 #Deutschland Computer- und informationsbezogene Kompetenzen von Schülerinnen und Schülern im zweiten internationalen Vergleich und Kompetenzen im Bereich Computational Thinking (pp. 79–112). Waxmann.
  72. Shavelson, R. J. (2013). On an Approach to Testing and Modeling Competence. Educational Psychologist, 48(2), 73–86. https://doi.org/10.1080/00461520.2013.779483
  73. Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003
  74. Siddiq, F., Hatlevik, O. E., Olsen, R. V., Throndsen, I., & Scherer, R. (2016). Taking a future perspective by learning from the past – A systematic review of assessment instruments that aim to measure primary and secondary school students’ ICT literacy. Educational Research Review, 19, 58–84. https://doi.org/10.1016/j.edurev.2016.05.002
  75. Stachowiak, H. (1973). Allgemeine Modelltheorie. Springer.
  76. Stachowiak, H. (1989). Modell. In H. Seiffert & G. Radnitzky (Eds.), Handlexikon zur Wissenschaftstheorie (pp. 219–222). Ehrenwirth.
  77. Steuer, G., Engelschalk, T., Jöstl, G., Roth, A., Wimmer, B., Schmilz, B., Schober, B., Spiel, C., Ziegler, A., & Dresel, M. (2015). Kompetenzen zum selbstregulierten Lernen im Studium. Ergebnisse der Befragung von Expert(inn)en aus vier Studienbereichen. Zeitschrift für Pädagogik, 61. Beiheft, 203–225.
  78. Suess, H.-M., & Beauducel, A. (2005). Faceted Models of Intelligence. In Handbook of Understanding and Measuring Intelligence (pp. 313–332). SAGE. https://doi.org/10.4135/9781452233529.n18
  79. Suess, H.-M., & Beauducel, A. (2015). Modeling the construct validity of the Berlin Intelligence Structure Model. Estudos de Psicologia (Campinas), 32(1), 13–25. https://doi.org/10.1590/0103-166X2015000100002
  80. Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
  81. Voogt, J., Knezek, G., & Pareja Roblin, N. (2015). Research-informed strategies to address educational challenges in a digitally networked world. Education and Information Technologies, 20(4), 619–623. https://doi.org/10.1007/s10639-015-9430-4
  82. Weinert, F. E. (2001). Vergleichende Leistungsmessung in Schulen – eine umstrittene Selbstverständlichkeit. In Leistungsmessungen in Schulen (pp. 17–31). Beltz.
  83. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
  84. White, R. E. (1959). Motivation reconsidered: The concept of competence. Psychological Review, 66(5), 297–333.
  85. Wiesner, C., & Schreiner, C. (2020a). Digitale Kompetenzen: Computational Thinking als Basis eines Kompetenzmodells. In C. Trültzsch-Wijnen & G. Brandhofer (Eds.), Bildung und Digitalisierung (pp. 29–49). Nomos. https://doi.org/10.5771/9783748906247-29
  86. Wiesner, C., & Schreiner, C. (2020b). Ein Modell für den kompetenzorientierten Unterricht und als Impuls für reflexive Unterrichtsentwicklung und -forschung. In U. Greiner, F. Hofmann, C. Schreiner, & C. Wiesner (Eds.), Bildungsstandards. Kompetenzorientierung, Aufgabenkultur und Qualitätsentwicklung im Schulsystem (pp. 319–352). Waxmann.
  87. Wiesner, C., Schreiner, C., & Brandhofer, G. (2020). Die Transformation durch Digitalisierung im Anthropozän. Digitale Kompetenz als anthropozäne Kulturressource. In C. Sippl, E. Rauscher, & M. Scheuch (Eds.), Das Anthropozän lernen und lehren (pp. 333–346). Studienverlag.
  88. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33. https://doi.org/10.1145/1118178.1118215
  89. Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118
  90. Wing, J. M. (2011). Research Notebook: Computational thinking—What and why? The link. The Magazine of the Carnegie Mellon University School of Computer Science. http://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
  91. Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, 103607. https://doi.org/10.1016/j.compedu.2019.103607
  92. Zhong, B., & Xia, L. (2020). A Systematic Review on Exploring the Potential of Educational Robotics in Mathematics Education. International Journal of Science and Mathematics Education, 18(1), 79–101. https://doi.org/10.1007/s10763-018-09939-y
  93. Ziener, G. (2016). Herausforderung Vielfalt. Kompetenzorientiert unterrichten zwischen Standardisierung und Individualisierung. Kallmeyer/Klett
LICENSE
Creative Commons License