The European Educational Researcher

A Systematic Review of Emerging Trends in Education: Exploring the Risks and Benefits of Generative Artificial Intelligence Applications

The European Educational Researcher, Volume 8, Issue 3, October 2025, pp. 57-94
OPEN ACCESS VIEWS: 66 DOWNLOADS: 37 Publication date: 15 Oct 2025
ABSTRACT
The rapid development of Generative Artificial Intelligence in education presents new opportunities but also raises concerns about inequality and the integrity of academic practices. This study explores its impact, trends, and risks in education through an extensive review of existing academic literature. The methodology includes a systematic review conducted via the Scopus platform, incorporating documentary analysis with descriptive statistics, systematic content analysis, and bibliometric analysis of citations, co-citations, and co-words in scientific research on the topic. Network maps were created using VOSviewer, and graphs were produced with Microsoft Excel. Moreover, qualitative content analysis was further deepened using ATLAS.ti, . 24. The major findings indicate that generative artificial intelligence, as a set of information-processing tools, has significantly advanced over the past century, especially notable for its ability to process information quickly and adapt to human objectives. Its rapid adaptation is transforming education, particularly by enhancing personalization, improving knowledge retention, and supporting interactive learning environments. However, the use of GenAI also raises ethical and equity concerns, including risks to academic integrity, data privacy, and potential algorithmic bias, alongside challenges in ensuring equitable access and adequate teacher training. The main focus of current applications lies in commercial, collaborative, and natural language strategies, which surpass other uses such as images and videos. GenAI aligns with pedagogical theories that promote student autonomy, active learning, and collaboration, if implemented with clear educational intent. However, since machines lack human social perception, it is necessary to reflect critically on the ethical boundaries and appropriate use of AI in the linguistic and educational domains. Gen AI offers transformative potential for education by enabling personalized and efficient learning; however, addressing associated risks, ethical challenges, and issues of equity is essential to ensure its benefits are realized without compromising academic integrity or exacerbating inequalities.
KEYWORDS
Artificial intelligence, bibliometric analysis education, generative artificial intelligence, systemic review, VOSviewer.
CITATION (APA)
García-Carreño, I. (2025). A Systematic Review of Emerging Trends in Education: Exploring the Risks and Benefits of Generative Artificial Intelligence Applications. The European Educational Researcher, 8(3), 57-94. https://doi.org/10.31757/euer.834
REFERENCES
  1. References
  2. Alam, F. (2023). Harnessing the power of artificial intelligence for adaptive learning systems: A systematic review. International Journal of Education and Management Engineering, 14(5), 12-22. https://doi.org/10.5815/ijeme.2024.05.02
  3. Almohesh, A. (2024). AI Application (ChatGPT) and Saudi Arabian Primary School Students’ Autonomy in Online Classes: Exploring Students and Teachers’ Perceptions. International Review of Research in Open and Distributed Learning, 25(3), 1–18. https://doi.org/10.19173/irrodl.v25i3.7641
  4. Anand, A., & Brix, J. (2022). The learning organization and organizational learning in the public sector: A review and research agenda. The Learning Organization, 29(2), 129-156. https://doi.org/10.1108/TLO-05-2021-0061
  5. ATLAS.ti, . ATLAS.ti, Scientific Software Development GmbH [ATLAS.ti, 24 Mac]. Available online: https://atlasti.com .
  6. Avsheniuk, N., Lutsenko, O., Svyrydiuk, T., & Seminikhyna, N. (2024). Empowering Language Learners’ Critical Thinking: Evaluating ChatGPT’s Role in English Course Implementation. Arab World English Journal (Special Issue on ChatGPT), 1(1), 210–224. https://doi.org/10.24093/awej/ChatGPT.14
  7. Azure (https://azure.microsoft.com/).
  8. Baker, R., & Smith, L. (2022). Automated assessment technologies: Reducing grading workload and fostering timely feedback in education. Journal of Educational Technology, 58(3), 112-126.
  9. Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33,1-17. https://doi.org/10.1596/39959
  10. Bannister, P., Santamaría, A., and Alcalde, E. (2023). A systematic review of generative AI and (english medium instruction) higher education. Aula Abierta, 52 (4), 401-409. https://doi.org/10.17811/rifie.52.4.2023.401-409.
  11. Bitzenbauer, P. (2023). ChatGPT in physics education: A pilot study on easy-to-implement activities. Contemporary Educational Technology, 15(3), ep430. https://doi.org/10.30935/cedtech/13176
  12. Bremmer, I. (2023, September,6). Can we govern AI before it’s too late? GZERO. https://www.gzeromedia.com/by-ian-bremmer/can-we-govern-ai-before-its.
  13. Brown, J., & Green, S. (2022). Implementation of Machine Learning-driven Scheduling Systems in Higher Education: Impacts on Administrative Effectiveness. International Journal of Educational Management, 1(2), 213-236
  14. Bond, M., Khosravi, H., De Laat, M. et al. (2024). A meta systematic review of artificial intelligence in higher education: a call for increased ethics, collaboration, and rigour. Int J Educ Technol High Educ 21 (4), 1-41. https://doi.org/10.1186/s41239-023-00436-z
  15. Chan, C., & Tsi, L. (2024). Will generative AI replace teachers in higher education? A study of teacher and student perceptions. Studies in Educational Evaluation, 83, 101395. https://doi.org/10.1016/j.stueduc.2024.101395
  16. Cheong, B. (2024). Transparency and accountability in AI systems: Safeguarding wellbeing in the age of algorithmic decision-making. Frontiers in Human Dynamics, 6, Article 1421273. https://doi.org/10.3389/fhumd.2024.1421273
  17. Chiu, T. (2024). Future research recommendations for transforming higher education with generative AI. Computers and Education: Artificial Intelligence,6, p.100197. https://doi.org/10.1016/j.caeai.2023.100197
  18. Chng, E., Tan, A., y Tan, S. (2023). Examining the Use of Emerging Technologiesin Schools: a Review of Artificial Intelligenceand Immersive Technologies in STEMEducation. Journal for STEM Education Research, In Press. https://doi.org/10.1007/s41979-023-00092-y
  19. Cooper, G. (2023). Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial
  20. Intelligence. Journal of Science Education and Technology, 32, 444-452. https://doi.org/10.1007/s10956-02310039-y
  21. Crawford, K. (2023). Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. AI & Society, 38(5), 1257–1259. https://doi.org/10.1007/s00146-022-01488-x
  22. Cummings, R., Monroe, S., & Watkins, M. (2024). Generative AI in first-year writing: An early analysis of affordances, limitations, and a framework for future. Computers and Composition, 71, 102827. https://doi.org/10.1016/j.compcom.2024.102827
  23. Delgado de Frutos, N., Campo-Carrasco, L., Sainz de la Maza, M. & Extabe-Urbieta, J.M. (2024). Aplicación de la Inteligencia Artificial (IA) en Educación: Los beneficios y limitaciones de la IA percibidos por el profesorado de educación primaria, educación secundaria y educación superior. Revista Electrónica Interuniversitaria de Formación del Profesorado, 27(1), 207-224. https://doi.org/10.6018/reifop.577211
  24. Desmarais, M. & Baker, R. (2012). A review of recent advances in learner and skill modeling in intelligent learning environments. User Model User-Adap Inter 22, 9–38. https://doi.org/10.1007/s11257-011-9106-8
  25. Denyer, D., Tranfield, D., & Smart, P. (2001). Developing an evidence-based approach to management knowledge using systematic review. Money & Management, 20(3), 37-44.
  26. Dillenbourg, P., & Jermann, P. (2007). Designing Integrative Scripts. In: Fischer, F., Kollar, I., Mandl, H., Haake, J.M. (eds) Computer-Supported Collaborative Learning, (vol 6, pp. 275-301). Springer US, Boston, MA. https://doi.org/10.1007/978-0-387-36949-5_16
  27. Duah, J., & McGivern, P. (2024). How generative artificial intelligence has blurred notions of authorial identity in higher education. International Journal of Information and Learning Technology, 41(2), 180-193. https://doi.org/10.1108/IJILT-11-2023-0213
  28. Echaiz, L., Neupane, B., Rivera-Lam, M., Sibal, P., & Hu, X. (2021). El Aporte de la Inteligencia Artificial y las TIC Avanzadas a las Sociedades del Conocimiento: Una Perspectiva de Derechos, Apertura, Acceso y Múltiples Actores. UNESCO Publishing. Paris.
  29. Economides, A., & Perifanou, M. (2024, June). University students using ChatGPT in project-based learning. In Workshop on Digital Transformation in Higher Education (pp. 27-39). Communications in Computer and Information Science (CCIS). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-73990-3_3
  30. Eguchi A., Okada H., Muto Y. (2021). Contextualizing AI education for K-12 students to enhance their learning of AI literacy through culturally responsive approaches. KI-Künstliche Intelligenz, 35(2), 153-161. https://doi.org/10.1007/s13218-021-00737-3
  31. Emran, S., Mohammed, M., Saeed, H., Abu Keir, M., Alani, Z., & Mohammed Ibrahim, F. (2024). Paraphrasing ChatGPT answers as a tool to enhance university students’ academic writing skills. In 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 501–505). IEEE. https://doi.org/10.1109/ICETSIS61505.2024.10459386
  32. Feng, Shihui & Law, Nancy. (2021). Mapping Artificial Intelligence in Education Research: A Network-Based Keyword Analysis. International Journal of Artificial Intelligence in Education, 31(2), 277-303. https://doi.org/10.1007/s40593-021-00244-4
  33. Fjelland, R. (2020). Why general artificial intelligence will not be realized. Humanities & Social Sciences Communications, 7(1), 1-9. https://doi.org/10.1057/s41599-020-0494-4
  34. Flagler Library. (2025, January 28). Generative AI ethics and ethical use in academic contexts: AI tools and student assessments. https://flagler.libguides.com/c.php?g=1449135&p=11049371
  35. Fleckenstein, J., Meyer, J., Johann, D., Keller, D., Köller, A., & Möller, J. (2024). Do teachers spot AI? Evaluating detectability of AI-generated texts among student essays. Computers and Education: Artificial Intelligence, 6, 100209. https://doi.org/10.1016/j.caeai.2024.100209
  36. Flores-Vivar, J., & García-Peñalvo, F. (2023). Reflections on the ethics, potential, and challenges of artificial intelligence in the framework of quality education (SDG4). Comunicar: Revista cientifica de comunicacion y educacion, 74, 37-47. https://doi.org/10.3916/C74-2023-03
  37. Floridi, L. (2019). Artificial intelligence, ethics, and the limits of understanding. Philosophy & Technology, 32(2), 123–130. https://doi.org/10.1007/s13347-019-00364-3
  38. Fokides, E., & Peristeraki, E. (2024). Comparing ChatGPT's correction and feedback comments with that of educators in the context of primary students’ short essays written in English and Greek. Education and Information Technologies, 30(2), 2577–2621. https://doi.org/10.1007/s10639-024-12912-8
  39. Gaburro, V. (2025, September 9). Battling AI hallucinations: Can we trust citations in AI-generated text? LinkedIn. https://www.linkedin.com/pulse/battling-ai-hallucinations-can-we-trust-citations-gaburro-phd-ccc-vuenf
  40. García-Carreño, I. (2024). ChatGPT one year after its launch: A bibliometric analysis. In I. Cabero Fayos (Ed.), Perspectivas contemporáneas en educación: innovación, investigación y transformación (pp. 1210-1233). Editores: Dykinson, España
  41. García-Carreño, I. (2025). Reflections on ChatGPT in the field of Social Sciences: A Bibliometric Study. The European Educational Researcher, 8(1), 5-28. https://doi.org/10.31757/euer.812
  42. García-López, I., & Trujillo-Liñán, L. (2025). Ethical and regulatory challenges of Generative AI in education: a systematic review. Frontiers in Education, 10, Article 1681252. https://doi.org/10.3389/feduc.2025.1681252
  43. García-Peñalvo, F. y Vázquez-Ingelmo, A. (2023). What do we mean by GenAI? A systematic mapping of the evolution, trends, and techniques involved in Generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8 (4), 7-16. http://dx.doi.org/10.9781/ijimai.2023.07.006
  44. García-Peñalvo, F., Llorens-Largo, F., & Vidal, J. (2024). The new reality of education in the face of advances in generative artificial intelligence. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 9-39. https://doi.org/10.5944/ried.27.1.37716
  45. Gouia‑Zarrad, R., & Gunn, C. (2024). Enhancing students’ learning experience in mathematics class through ChatGPT. International Electronic Journal of Mathematics Education, 19(3), em0781. https://doi.org/10.29333/iejme/14614
  46. Gough D., Oliver S., Thomas J. (2017). An introduction to systematic reviews (2nd ed.). In D. Gough, S. Oliver & J. Thomas (Eds.), An introduction to systematic reviews (2nd edition, pp. 1–18). London: Sage.
  47. Gruetzemacher, R. y Paradice, D. (2022). Deep Transfer Learning & Beyond: Transformer Language Models in
  48. Information Systems Research. ACM Computing Surveys, 54(10s), 1-35. https://doi.org/10.1145/3505245
  49. Haindl, P., & Weinberger, G. (2024). Students’ Experiences of Using ChatGPT in an Undergraduate Programming Course. In IEEE Access, 12, 43,519–43,529. https://doi.org/10.1109/ACCESS.2024.3380909.
  50. Han, B., Nawaz, S., Buchanan, G., & McKay, D. (2023). Ethical and pedagogical impacts of AI in education. In N. Wang, G. Rebolledo-Mendez, N. Matsuda, O. C. Santos, & V. Dimitrova (Eds.), Artificial Intelligence in Education. AIED 2023. Lecture Notes in Computer Science, Vol. 13916 (pp. 667–673). Springer, Cham. https://doi.org/10.1007/978-3-031-36272-9_54
  51. Holmes, W., (2023). AI applications in education: Intelligent tutoring systems and personalized assistants. Artificial Intelligence in Education Journal, 29(1), 14-30.
  52. Holmes, W., Porayska-Pomsta, K., Holstein, K., Sutherland, E., Baker, T., Buckingham Shum, S., Santos, O., Rodrigo, M. T., Cukurova, M., Bittencourt, I., & Koedinger, K. (2021). Ethics of AI in education: Towards a community-wide framework. International Journal of Artificial Intelligence in Education. https://doi.org/10.1007/s40593-021-00239-1
  53. Huesca, G., Martínez‑Treviño, Y., Molina‑Espinosa, J. M., Sanromán‑Calleros, A. R., Martínez‑Román, R., Cendejas‑Castro, E. A., & Bustos, R. (2024). Effectiveness of using ChatGPT as a tool to strengthen benefits of the flipped learning strategy. Education Sciences, 14(6), 660. https://doi.org/10.3390/educsci14060660
  54. Hsu, Yu-Chang & Ching, Yu-Hui. (2023). Generative Artificial Intelligence in Education, Part One: The Dynamic Frontier. TechTrends, 67(4), 603-607. https://doi.org/10.1007/s11528-023-00863-9
  55. Hwang, Gwo-Jen, Xie, Haoran, Wah, Benjamin W., & Gaˇsevi´c, Dragan (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 1–5. https://doi.org/10.1016/j.caeai.2020.100001
  56. Jauhiainen, J., & Garagorry-Guerra, A. (2024). Generative AI and Education: Dynamic Personalization of Pupils’ School Learning Material with ChatGPT. Frontiers in Education, 9, 1288723. https://doi.org/10.3389/feduc.2024.1288723
  57. Kelly, A., Sullivan, M., & Strampel, K. (2023). Generative artificial intelligence: University student awareness, experience, and confidence in use across disciplines. Journal of University Teaching and Learning Practice, 20(6). https://doi.org/10.53761/1.20.6
  58. Kearney, A., & Thompson, T. (2021). Machine Learning-driven Automation in Educational Management: Enhancing Administrative Effectiveness. International Journal of Educational Management, Rivers State University, 1(2), 213-236.
  59. Khosravi, H. (2022). AI integration and its pedagogical consequences: A systematic review. Journal of Learning Analytics, 9(1), 22-38.
  60. Lee, M. (2019). The Beijing Consensus on AI and education: Policy challenges and prospects. Policy Futures in Education, 17(7), 817-832.
  61. Lee, A., Tan, S., & Teo, C. (2023). Designs and practices using generative AI for sustainable student discourse and knowledge creation. Learning Environments Research, 10, 59. https://doi.org/10.1186/s40561-023-00279-1
  62. Li, Y., & Chai, Y. (2025). Bridging regional disparities through AI-driven personalized learning paths: evidence from Chinese high school education. Interactive Learning Environments, 1-16. https://doi.org/10.1080/10494820.2025.2523388
  63. Lim, W., Gunasekara, A., Pallant, J., Pechenkina, E. (2023). Generative AI and the future of education: Ragnarök or reformation? A paradoxical perspective from management educators, The International Journal of Management Education,21 (2). 1-13. https://doi.org/10.1016/j.ijme.2023.100790
  64. Linnenluecke, M., Marrone, M., & Singh, A. (2020). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175-194. https://doi.org/10.1177/0312896219877678
  65. Liu, J., Wang, C., Liu, Z., Gao, M., Xu, Y., Chen, J., & Cheng, Y. (2024). A bibliometric analysis of generative AI in education: current status and development. Asia Pacific Journal of Education, 44(1), 156–175. https://doi.org/10.1080/02188791.2024.2305170
  66. Lodge, J., Thompson, K., & Corrin, L. (2023). Mapping out a research agenda for generative artificial intelligence in tertiary education. Australasian Journal of Educational Technology, 39(1), 1–8. https://doi.org/10.14742/ajet.8695
  67. Loor-Rivadeneira, M., García- García, P., Alvarado-Nolivos, M., & Quevedo-Mora, V. (2024). Inteligencia artificial: Como integrarla en la educación. RECIAMUC, 8(1), 88-96. https://doi.org/10.26820/recia-muc/8.(1).ene.2024.88-96.
  68. Lu, J., Zheng, R., Gong, Z., & Xu, H. (2024). Supporting teachers’ professional development with generative AI: The effects on higher order thinking and self‑efficacy. IEEE Transactions on Learning Technologies, 17, 1279–1289. https://doi.org/10.1109/TLT.2024.3369690
  69. Luo, J. (2024). A critical review of GenAI policies in higher education assessment: A call to reconsider the “originality” of students’ work. Assessment & Evaluation in Higher Education, 1-14. https://doi.org/10.1080/02602938.2024.2309963
  70. Mao, J., Chen, B. & Liu, J. (2024). Generative Artificial Intelligence in Education and Its Implications for Assessment. TechTrends 68, 58–66. https://doi.org/10.1007/s11528-023-00911-4
  71. Marín, V. (2022). The systematic review in Educational Technology research: observations and advice. RiiTE Revista Interuniversitaria de Investigación En Tecnología Educativa, 13, 62-79. https://doi.org/10.6018/riite.533231
  72. Miao, F., & Holmes, W. (2023). Guidance for generative AI in education and research. UNESCO Publishing: Paris, France.
  73. Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D., Thierry-Aguilera, R., & Gerardou, F. S. (2023). Challenges and Opportunities of Generative AI for Higher Education as Explained by ChatGPT. Education Sciences, 13(9), 856. https://doi.org/10.3390/educsci13090856
  74. Moher, D., Liberati, A., Tetzlaff, J., Altman, D., & PRISMA Group, T. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), 264-269. https://doi.org/10.7326/0003-4819-151-4-200908180-00135
  75. Monett, D, & Lewis, C. (2018). Getting clarity by defining artificial intelligence—a survey. In Vincent C. Müller (Ed.), Philosophy and theory of artificial intelligence (pp. 212–214). Cham, Switzerland: Springer.
  76. Moorhouse, B. (2024). Beginning and first-year language teachers’ readiness for the generative AI age. Computers and Education: Artificial Intelligence, 6, 100201. https://doi.org/10.1016/j.caeai.2024.100201
  77. Noroozi, O., Soleimani, S., Farrokhnia, M., & Banihashem, S. (2024). Generative AI in education: Pedagogical, theoretical, and methodological perspectives. International Journal of Technology in Education (IJTE), 7(3), 373-385. https://doi.org/10.46328/ijte.845
  78. Nugroho, A., Putro, N., Syamsi, K., Mutiaraningrum, I., & Wulandari, F. D. (2024). Teacher’s Experience Using ChatGPT in Language Teaching: An Exploratory Study. Computers in the Schools, 1–20. https://doi.org/10.1080/07380569.2024.2441161
  79. OECD. (2024). The potential impact of artificial intelligence on equity and inclusion in education. OECD Publishing. https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/08/the-potential-impact-of-artificial-intelligence-on-equity-and-inclusion-in-education_0d7e9e00/15df715b-en.pdf
  80. OpenAI. (2023). ChatGPT (Mar 14 version) [Large language model]. https://chat.openai.com/chat
  81. Page, M.J., McKenzie, J.E., Bossuyt, P.M. et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev 10, 89 https://doi.org/10.1186/s13643-021-01626-4
  82. Pavlenko, O., & Syzenko, A. (2024). Using ChatGPT as a learning tool: A study of Ukrainian students’ perceptions. Arab World English Journal, 15(1), 252–264. https://doi.org/10.24093/awej/ChatGPT.17
  83. Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Oxford: Blackwell Publishing. https://doi.org/10.1002/9780470754887
  84. Rahimi, A., & Teimouri, R. (2025). Advancing language education with ChatGPT: A path to cultivate 21st-century digital skills. Research Methods in Applied Linguistics, 4 (2), 100218. https://doi.org/10.1016/j.rmal.2025.100218
  85. Ray, P. (2023). ChatGPT: S comprehensive review on background. Applications, key challenges, bias, ethics, limitations, and future scope. Internet of Things and cyber-Physical Systems,3.121-154, https://doi.org/10.1016/j.iotcps.2023.04.003
  86. Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach, Prentice Hall, Upper Saddle River.
  87. Saleem, N., Mufti, T., Sohail, S., & Madsen, D. (2024). ChatGPT as an innovative heutagogical tool in medical education. Cogent Education, 11(1), 2332850. https://doi.org/10.1080/2331186X.2024.2332850
  88. Salinas-Navarro, D.; Vilalta-Perdomo, E.; Michel-Villarreal, R.; Montesinos, L. (2024). Using Generative Artificial Intelligence Tools to Explain and Enhance Experiential Learning for Authentic Assessment. Educ. Sci. 14, 83. https://doi.org/10.3390/educsci14010083
  89. Silver, C., & Lewins, A. (2014). Using software in qualitative research: A step-by-step guide (2nd ed.). Sage Publications LTD.
  90. Sharples, M. (2023). Towards social generative AI for education: theory, practices and ethics. Learning: Research and Practice, 9(2), 159-167. https://doi.org/10.1080/23735082.2023.2261131
  91. Shi, S.J., Li, Y.R., & Zhong, J.W. (2024). A study on the impact of Generative Artificial Intelligence supported Situational Interactive Teaching on students’ “flow” experience and learning effectiveness – a case study of legal education in China. Pacific Journal of Education, 44(1), 112-138. https://doi.org/10.1080/02188791.2024.2305161
  92. Steele, J. (2023). Artificial Intelligence (AI) and Accessibility Research. Proceedings from the online symposium held January 10–11, 2023. World Wide Web Consortium (W3C). https://www.w3.org/WAI/research/ai2023/
  93. Stone, C. (2023). Artificial intelligence in social work practice education: The potential use of Generative AI for learning. Journal of Practice Teaching and Learning, 20(3). https://doi.org/10.1921/jpts.v20i3.219
  94. Sun, D., Boudouaia, A., Zhu, C., & Li, Y. (2024). Would ChatGPT-facilitated programming mode impact college students’ programming behaviors, performances, and perceptions? An empirical study. International Journal of Educational Technology in Higher Education, 21, 14. https://doi.org/10.1186/s41239-024-00446-5
  95. Su, J., & Yang, W. (2023). Unlocking the power of ChatGPT: A framework for applying generative AI in education. ECNU Review of Education, 6(3), 389–402. https://doi.org/10.1177/20965311231168423
  96. Symbio6. (2024). Evaluating AI prompt performance: Metrics & best practices. Symbio6. Retrieved from https://symbio6.nl/en/blog/evaluate-ai-prompt-performance
  97. Tegmark, M. (2018). Life 3.0: Being human in the age of artificial intelligence. London: Penguin Books
  98. Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222. https://doi.org/10.1111/1467-8551.00375
  99. United Nations Educational, Scientific and Cultural Organization (UNESCO). (2019). Beijing consensus on artificial intelligence and education: International Conference on Artificial Intelligence and Education, Planning Education in the AI Era: Lead the Leap, Beijing, China. https://bit.ly/3n7wBIK
  100. United Nations Educational, Scientific and Cultural Organization. (UNESCO). (2021). AI and education: Guidance for policy-makers. UNESCO Publishing. Paris. https://doi.org/10.54675/PCSP7350
  101. United Nations Educational, UNESCO. (2023). Guidance for generative AI in education and research: Towards a human-centered approach to the use of generative AI. UNESCO Publishing: Paris, France. https://doi.org/10.54675/EWZM9535
  102. Urban, M., Děchtěrenko, F., Lukavský, J., Hrabalová, V., Svacha, F., Brom, C., & Urban, K. (2024). ChatGPT improves creative problem-solving performance in university students: An experimental study. Computers & Education, 215, 1-15. https://doi.org/10.1016/j.compedu.2024.105031
  103. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. y Polosukhin, I. (2017). Attention is all you need. En Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing System, (pp. 5998-6008), December 4-9, 2017, Long Beach, CA, USA.
  104. VanLehn, K. (2024). Virtual tutors in personalized education: Effectiveness and instructional adaptation. Educational Psychology Review, 36(1), 56-74.
  105. Victor, B., Sokol, R., Goldkind, L., & Perron, B. (2023). Recommendations for social work researchers and journal editors on the use of generative AI and large language models. Journal of the Society for Social Work and Research, 14(3), 563-577. https://doi.org/10.1086/726021
  106. Voß, S. (2023). Bus bunching and bus bridging: What can we learn from generative AI tools like ChatGPT? Sustainability, 15(26), 9625. https://doi.org/10.3390/su15129625
  107. VOSviewer. (2020). https://www.vosviewer.com/
  108. Young, J., & Shishido, M. (2023). Investigating OpenAI’s ChatGPT Potentials in Generating Chatbot’s Dialogue for English as a Foreign Language Learning. International Journal of Advanced Computer Science and Applications, 14(6), 65–72. https://doi.org/10.14569/IJACSA.2023.0140607
  109. Waltman L., & van Eck N. (2012). A new methodology for constructing a publication level classification system of science. Journal of the American Society for Information Science and Technology, 63(12). 2378– 2392. https://doi.org/10.1002/asi.22748
  110. Wang, T., & Cheng, E. (2021). An investigation of barriers to Hong Kong K-12 schools incorporating Artificial Intelligence in education. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100031
  111. Woolf, B. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann. University of Massachusetts, Amhersthttps://doi.org/10.1016/B978-0-12-373594-2.X0001-9
  112. Woolf, B. (2023). Real-time data utilization in adaptive learning systems to enhance motivation and outcomes. Journal of Educational Data Mining, 15(1), 1-20.
  113. Wu, H. (2025). Commentary: Bibliometric analysis of targeted immunotherapy for osteosarcoma—current knowledge, hotspots and future perspectives. Frontiers in Immunology, 16, Article 1590342. https://doi.org/10.3389/fimmu.2025.1590342
  114. Wu, R., & Yu, Z. (2023). Do AI chatbots improve students’ learning outcomes? Evidence from a meta‑analysis. British Journal of Educational Technology, 55(1), 10–33. https://doi.org/10.1111/bjet.13334
  115. Yilmaz, R., Yurdugül, H., Karaoğlan Yilmaz, F., Şahi̇n, M., Sulak, S., Aydin, F., Tepgeç, M., Müftüoğlu, C., & Ömer, O. (2022). Smart MOOC integrated with intelligent tutoring: A system architecture and framework model proposal. Computers and Education: Artificial Intelligence, 3, Article 100092. https://doi.org/10.1016/j.caeai.2022.100092
  116. Yusuf, A., Pervin, N. & Román-González, M. (2024). Generative AI and the future of higher education: a threat to academic integrity or reformation? Evidence from multicultural perspectives. Int J Educ Technol High Educ 21, 21 https://doi.org/10.1186/s41239-024-00453-6
  117. Xu, X. (2024). Navigating the AI Revolution: Implications for Business Education and Pedagogy. Journal of Curriculum and Teaching, 13(1), 371-391. https://doi.org/10.5430/jc
  118. Zawacki-Richter, O., Kerres, M., Bedenlier, S., Bond, M., & Buntins, K. (2020). Systematic reviews in educational research: Methodology, perspectives and application (p. 161). Springer Nature. University of Oldenburg, Germany. https://doi.org/10.1186/s41239-019-0171-0
  119. Zendesk. (2024). AI trust at Zendesk: Privacy, security, transparency, and customer control in AI governance. Zendesk Support. https://support.zendesk.com/hc/en-us/articles/9196781863578-AI-Trust-at-Zendesk
  120. Zhao, Y., Smith, J. A., Johnson, R. T., & Lee, K. M. (2022). Artificial intelligence and education: End the grammar of schooling. Journal of Educational Technology, 15(3), 234-256.
LICENSE
Creative Commons License